

TRT Barrel module QA and gain mapping

S. Kovalenko, M.C. Long, K. McFarlane, T. Shin, and V. Vassilakopoulos Hampton University

Motivation

- Purpose of gain mapping
- QA process related to gain mapping – MTS + Duke critical
- Method
- Development of QC criteria
- Results
- MGM-MTS comparison

Motivation

- The motivation for this discussion is the finding that TRT barrel modules, particularly type 3, have significant numbers (~1.5%) of wire segments that fail current gain variation criteria
- These wires are currently recommended for removal
- Is the group ready to change criteria to avoid removing wires?

Summary

- QC criteria are currently:
 - Flagging wires with G>8% and S>7.5%
 - Discussion of profiles and spectra
 - Removal of wire with G>8% and S positively correlated with G.
- Systematic effects on G are the order of 2%
- To ensure no offset >400 μm, the criterion is set at 8% (11% 1% stat 2% sys).

MTS or Duke scanner is the primary tool

- Rework at CERN (removal and replacement) is done on basis of MTS or Duke results
- If a wire passes MTS or Duke criteria, it will be left in place (no re-rework)
- MGM is useful only where a wire was replaced or MTS (or Duke data) is missing
- We can look at MTS, Duke must talk about their results.

Size of problem

- Out of 18 type-3 modules mapped with MTS (~14,400 wires, 214 wires are flagged for removal (1.5%).
- Two modules (3.34 and 3.35) account for 90 flagged wires.

G range	8%<=G<9%	9%<=G<10%	G>=10%
18 modules	66	34	114
3.34, 3.35	21	12	57

3/3/2004

TRT meeting Feb 2003 CERN

Conclusion

- If the G criterion is moved up, the worst modules will still have many wires with substantial offsets.
- Is this safe?
- Discussion of relation of gain variation to offset and choice of 8% for MTS follows.

Primary purpose

- Create robust TRT by identifying wires for removal that might be subject to HV breakdown
- Current criterion: offset at any point on a wire must be <400 µm (see next slide)
- Perhaps this needs re-examination.

Operational stability

Risk factors

- Protection of TRT in operation is by fuses (one for 8 straws) and HV modularity (one for 80 straws in type-3 barrel module)
 - If a wire segment is removed, two segments are lost.
 - If a wire segment draws enough current and blows a fuse, it will turn off 16 segments
 - If the fuse does not blow, 160 segments may need to be turned off.

Secondary purpose

- Assess overall quality of module by counting wires with an offset (at any point) >300µm
 - This is to be <5% of the total wire segments</p>
- In practice this may only be used to select modules for installation, along with the number of dead wires.

QA approach

- A quality circle meets to discuss data on each module. All data, including gain profiles for each straw, are available at the meeting (usually a VC)
- Additional criteria, quantitative and qualitative have been developed to reduce the evaluation task to manageable proportions
- The task is to evaluate 115k wire segments (~105 barrel modules)

- Measure gain at sample of points along wire segment and look for gain variation
- Gain criterion is based on measurements of Kaioumov et al.
- 400 μm -> 11% gain shift⁻
- 300 µm -> 6% shift

Gain shift vs. offset

Gain shift, sys + stat uncertainties

Look at effective offset cut for 2% sys + 1% stat allowance, using quadratic fit to Kaioumov et al.:

Measured G	Sys+stat	Offset, µm
8	3	400
9	3	417
10	3	434
11	3	450

Confounding factors

- Offset is not the only parameter affecting gain variation; there are additional factors including:
 - Systematic effects in the mapping system (MGM and MTS)
 - Contamination
 - Wire diameter variation (Oh et al.)
 - Non-zero offset at every point
 - Statistics
- Additional criteria are needed to deal with these factors, as discussed below.

Systematic effects

- Z-dependent global correction ('slope correction')
- Granularity of measurement
- Electronics non-proportionality
- Analysis
- Non-zero wire offsets.

Z-dependent effects in MTS

- Since we scan in z, time, gas mix, temperature dependent effects contribute.
- Corrected by using a global average of `good' wires (G<8% uncorrected).</p>
- This introduces a ~1% systematic effect and will reduce corrected gain shift in module. See next slide.

Sample of global corrections

Range of global correction

From this sample, a 2% range is seen; a 1% systematic uncertainty results.

TRT meeting Feb 2003 CERN

3/3/2004

TRT meeting Feb 2003 CERN

Granularity

- Granularity : Measurements are made with ~2.8 cm spacing. For large gain variations, the maximum gain point can occur at the end of a wire segment or between two measured points. This effect depends on how quickly the gain varies.
 - For a bent straw, the maximum measured gain can be ~0.5-1% less than the actual maximum gain
 - A point distortion can be missed completely.

Electronics nonproportionality

- If the ADC channel is not proportional to the pulse height $(y \neq \alpha x)$, then measured gain shifts can be different from actual shifts
- There are two effects: offset and nonlinearity (discussed in previous presentations)
- For the MTS
 - Offset reduces the gain shift by ~8%
 - Non-linearity increases it by ~5%
 - Net effect is 3% x 8% reduction = 0.25% at cut.
 TRT meeting Feb 2003 CERN

- The peak-fitting is not the same as, although similar to that used in the paper by Kaioumov et al.
- In addition, the different photon energy changes the peak width and effect of offset
- An estimate of a 0.5% effect is reasonable.

Non-zero wire offset

- The method assumes that the wire is at least somewhere close to the center of the straw
- We know that 'hung wires' with offsets of >~350 μm are quite common (45 out of 14.4k), so offsets of ~100 μm must be frequent (~0.7% gain shift).
- The 16-channel tension test depends on wires being offset
- An allowance of 0.5% seems reasonable.

Statistical effects

- The gain variation, G, is defined as: $G = (g_{n,max} g_{n,min})/g_{n,min} \text{ where } g_n \text{ is the normalized gain at a point}$
- For wires with significant variation, this statistic has a spread of 2-4 times the spread of a single point.
- This can be measured by comparing MTS with itself. Next slide.

Statistics

- The reproducibility of the MTS, when there are no apparatus changes, is ~0.6% (see Peniscola talk)
- If the apparatus is changed (e.g. the wires do not use the same electronics channels, e.g., MTS vs. MGM), this becomes ~1%.
- We want at least a 1/8 chance or better of no wire being outside spec, so choose 1% (1σ at 1%, 1.7σ at 0.6%) as desirable allowance.

Summary of uncertainties

Description	Magnitude
Global correction	~1-2%
Granularity	~1%
Non-proportionality	~0.25%
Analysis	~0.5%
Non-zero wire offset	~0.5%
Statistics	~1%

Given the above, a 2% allowance for systematic effects is reasonable; with 1% for statistics, this gives 3% uncertainty. TRT meeting Feb 2003 3/3/2004 CERN

Width vs. gain for 'bent' straws

3/3/2004

Gain & width profile of good wire (for comparison)

Module 2.14, straw 27 _ 🗆 🗵 🔁 Graph-Gain¥ar+Si¥sZ_Adj.vi 1234567890 2345678901 12% Front Side Adjusted for average Z dependence G 1.6 1.4 G Adjusted for average Z dependence Back Side *(Gain-Gain_min)/Gain Gain shift 0% 80 90 40 50 60 10 20 110 30 7070 100 120 130 140 145 Z-Position (cm) Z-Position (cm) Front Side **Back Side** 9% 7.5% Width ∕ e 7.5 . ⊒ 6.8 6% 7070 50 60 80 90 100 110 120 130 140 145 Z-Position (cm) Z-Position (cm) Front Min@Z= 36.6 cm Back Min@Z= 132.8 All points M2.14 Straw# 27 Max@Z= 66.1 cm Max@Z= 110.8 Distance Autoscale

TRT meeting Feb 2003 CERN

'Contaminated' wire

TRT meeting Feb 2003 CERN

3/3/2004

Contamination

- We attribute a gain-width profile like the previous slide to contamination in the straw, or on the wire, that will be etched away during operation in ATLAS
- Experience with module 1.03 supports this approach
- A characteristic is that the highestgain point has a `normal' width.

3/3/2004

Bent straw (real offset)

3/3/2004

Wire categories

Category	Characteristic
Offset (bent, hung)	High-gain points have large width
Contaminated	High-gain points have normal width (low-gain points have large width)
Diameter variation	Gain variation present, but all widths normal

QA criteria

- Wires are selected for discussion based on:
 - Gain variation (G)>8%
 - Width of peak at highest gain point S >7.5%
- Decision on removal is based on study of gain profile and width profile

Effect of QC criteria

- Offset wires; these are selected for further discussion
- Contaminated wires: since the large-width points have low gain, these are not often selected
- Wires with varying diameter: spectra have normal widths, so they are not often selected.

MGM-MTS similarities

- X-rays are XRF from bromine (12 keV); beam is full width of module
 Ar-CO2 active (~1 vol/h) and purge gas
- Front-end and switching electronics (GPX, CSX, CCA, AIR)
- DAQ, database, and analysis software

MGM-MTS differences

Item	MTS	MGM		
X-ray beam size	~1 cm in z	~2 cm in z		
Z position	May be different ~<2 cm			
HV	1255 V	1230 V*		
*As a result, pulse height in GPX will be slightly smaller				
ADC	Amplifier+	PNPI		
	FastComTech			
The different ADC setups mean different calibrations (offset, scale factor)				

Data reduction

- The peak in each spectrum is fitted with a gaussian, finding the mean (g_p) and standard deviation (σ_p)
- The normalized gain at a point is the ratio of the straw mean to the the monitor mean: $g_n = g_{p,straw}/g_{p,mon}$ (multiplied by 500).
- The gain variation, G, is defined as: $G = (g_{n,max} g_{n,min})/g_{n,min}$
- Gain shift at a point, $\gamma_n = g_n/g_{n,min}$

TRT meeting Feb 2003 CERN

3/3/2004

Sample gain profiles (1)

Back

Front

M3.23, straw 1

TRT meeting Feb 2003 CERN

Sample gain profiles (2)

Front

M3.23, straw 466

TRT meeting Feb 2003 CERN

3/3/2004

Sample gain profiles (3)

Front

M3.23, straw 466

TRT meeting Feb 2003 CERN

Comments

Profiles match closely

Slight shift in z between MGM and MTS; this will affect comparisons

Gain variation comparison

M3.23, front

M3.23, back

TRT meeting Feb 2003 CERN

s189

s291

TRT meeting Feb 2003 CERN

3/3/2004

Width comparison

M3.23, front

TRT meeting Feb 2003 CERN

M3.23, back

3/3/2004

Width difference

Mean difference 0.8%

TRT meeting Feb 2003 CERN

Conclusions

- While gain variation agrees, width of peak is larger on average
- This can be due to a number of factors, e.g.:
 - Different offset (of ADC channel vs. pulse height)
 - Non-linearity in electronics
- Studies will be done, when time is available

Comment on criteria

Criteria to `flag' wires are:

- G > 8%
- S (width/peak at maximum gain point) >7.5%
- Get better match of MGM to MTS for M3.23 if MGM criterion changed to S>7.9%

 However, width criterion results only in examination of the wire – overall pattern determines removal.

Conclusions

Z shift between MTS and MGM

- Good agreement for G values
- Retain current criteria for wire `flagging' and discussion.

Width vs gain M2.14

TRT meeting Feb 2003 CERN

Stripes show wire diameter variation

TRT meeting Feb 2003 CERN

3/3/2004

. II X

Spectra (s194) after wire replacement

3/3/2004

TRT meeting Feb 2003 CERN